PULSED POWER SYSTEM 脈衝功率系統

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

2023 Fall Semester

Tuesday 9:10-12:00

Lecture 7

http://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=md577c3633c5970f80cbc9e8 21927e016

^{2023/10/24} updated 1

Requirements of triggering the Marx generator

- Triggering the Marx generator means starting the erosion process by external-command control at a preselected instant in time.
 - Small jitter.
 - Low prefire probability.
 - Large operating range.
- First stage triggable three-electrode spark-gap switch.
- Later stage self-breaking spark-gap switch.

Stray capacitors needed to be considered

C_s: between the stage capacitors and ground.

C_q: between the switch electrodes.

• Assumption: (1) each capacitor is charged to V_0 ; (2) S_1 is triggered first.

=> C_s @ B try to hold B to ground.

 $\Rightarrow C_0 \Rightarrow C_S$, so C_S is charged to V_0 rapidly.

=> A \rightarrow 2V0 => S₂ will fire only if it is over voltaged sufficiently long.

Stray capacitors needed to be considered

Assumption: ⁻

=> A \rightarrow 2V0 => S₂ will fire only if it is overvoltaged sufficiently long.

=> $C_g @ S_2$ and $C_S @ D$ form a capacitive voltage divider. $V_A = 2V_0$ $V_D = 2V_0 \frac{c_g}{c_s + c_g}$ $V_{S2} = V_A - V_D = 2V_0 \frac{c_S}{c_s + c_g} = \frac{2V_0}{1 + c_g/c_s}$ => C_g/C_s needs to be sufficiently small.

=> placing a ground conducting plate closed to the case of the storage capacitor. $C = \epsilon \frac{A}{A}$

Stray capacitors needed to be considered

- Assumption:
 - $= V_B = V_0 \quad V_D = 2V_0 \frac{c_g}{c_s + c_g} \approx 0 \rightarrow V_D = V_0 \text{, CS } @ \text{ D is charged by} \\ V_B \text{ through } R_L \text{ with a time constant of } \tau = \frac{1}{2}R_L c_S \\ = > \text{ overvoltage across switch S2 drops to V0.}$
 - => breakdown at an overvoltage across each switch with a delay time less than τ is needed.

The delay between breakdown in each spark gap becomes shorter and shorter

- ∵ overvoltage becomes increasingly large,
 - \therefore easier and easier to breakdown the other spark gaps.

Positive vs Negative output and peaking switch

• Positive output:

• Negative output: $R \quad V_{o} \rightarrow 0 \quad R \quad V_{o} \rightarrow -V_{o} \quad R \quad V_{o} \rightarrow -2V_{o}$ $V_{o} \rightarrow -2V_{o} \quad V_{o} \rightarrow -2V_{o} \quad V_{$

Step output of a Marx generator

A grounding resistor is needed if a load is a "gap"

Step output is removed with using a peaking switch

Examples of gaps as loads

Switch can be taken away from the discharge path to reduce system inductance using "LC Marx Generator"

Switch can be taken away from the discharge path to reduce system inductance using "LC Marx Generator"

- $V_L = 0$ @ time = 0.
- When switches are closed, LC oscillations happen.
- @ time=T/2, $V_L = -nV_0$. $V(t) = \frac{1}{2}nV_0[1 e^{-t/2\tau}\cos(\omega t)]$ $\omega = \frac{1}{\sqrt{LC}}$ $\tau = \frac{L}{R}$ R: sum of resistance from switches, capacitors, and wires.
- Advantage: since switches locate outside the erected Marx circuit, inductance of the system is low!
- Disadvantage: all switches must be fired with very low jitter!

Load effects on the Marx discharge

• The current and voltage are in phase and proportional, such as for relativistic e-beam generator or relativistic magnetron.

R. Chandra, etc., Proceedings of LINAC2014, Geneva, Switzerland

K. J. Thomas, etc., Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

- The current and voltage are in phase and proportional, such as for relativistic e-beam generator or relativistic magnetron.
- (a) L_M • If $L_M = 0$: $V_L(t) = V_M e^{-t/(R_L C_M)}$ • In general cases, $L_M \neq 0$. $|V_1|$ $V_1 - L_M \frac{\mathrm{dI}}{\mathrm{dt}} - R_L I = 0$ $V_1 = V_M - \frac{1}{C_M} \int I \, \mathrm{d}t \qquad V_M = \mathrm{N} \mathrm{V}_0$ $\frac{dV_1}{dt} = \frac{I}{C_M} \qquad \qquad \frac{I}{C_M} - L_M \frac{d^2 I}{dt^2} - R_L \frac{dI}{dt} = 0$ $\frac{d^2 I}{dt^2} + \frac{R_L}{L_M} \frac{dI}{dt} + \frac{1}{L_M C_M} I = 0$ $D^{2} + \frac{R_{L}}{L_{M}}D + \frac{1}{L_{M}C_{M}} = 0 \qquad D = -\frac{R_{L}}{2L_{M}} \pm \left| \left(\frac{R_{L}}{2L_{M}}\right)^{2} - \frac{1}{L_{M}C_{M}} \right|^{2} + \frac{1}{L_{M}C_{M}} = 0$

For
$$\frac{1}{L_M C_M} > \left(\frac{R_L}{2L_M}\right)^2$$
, $\omega \equiv \sqrt{\frac{1}{L_M C_M} - \left(\frac{R_L}{2L_M}\right)^2}$ (a) $\frac{L_M}{V_1}$
 $I(t) = e^{-\frac{R_L}{2L_M}t} [\alpha \sin(\omega t) + \beta \cos(\omega t)]$
 $I(0) = 0 => I(0) = \beta = 0$
 $I(t) = \alpha e^{-\frac{R_L}{2L_M}t} \sin(\omega t)$
 $\frac{dI}{dt} = \alpha \left[-\frac{R_L}{2L_M} \alpha e^{-\frac{R_L}{2L_M}t} \sin(\omega t) + \omega e^{-\frac{R_L}{2L_M}t} \cos(\omega t) \right] \stackrel{0.8}{\underset{U}{\cong}} \stackrel{0.8}{\underset{U}{\cong}} \stackrel{0.6}{\underset{U}{\cong}} \stackrel{0.6}{\underset{U}{\boxtimes}} \stackrel{0.6}{\underset{U}{\varinjlim}} \stackrel{0.6}{\underset{U}{\boxtimes}} \stackrel{0.6}{\underset{U}{\varinjlim}} \stackrel{0.6}{\underset{U}{\boxtimes}} \stackrel{0.6}{\underset{U}{\varinjlim}} \stackrel{0.6}{\underset{U}{\varinjlim}} \stackrel{0.6}{\underset{U}{\amalg}} \stackrel{0.6}{\underset{U}{\varinjlim}} \stackrel{0.6}{\underset{U}{\amalg}} \stackrel{$

For
$$\frac{1}{L_M C_M} < \left(\frac{R_L}{2L_M}\right)^2$$
, $\gamma \equiv \sqrt{\left(\frac{R_L}{2L_M}\right)^2 - \frac{1}{L_M C_M}}$ (a) L_M
 $I(t) = e^{-\frac{R_L}{2L_M}t} [\alpha e^{\gamma t} + \beta e^{-\gamma t}]$
 $I(0) = 0 => \alpha + \beta = 0 => \beta = -\alpha$
 $I(t) = \alpha e^{-\frac{R_L}{2L_M}t} [e^{\gamma t} - e^{-\gamma t}] = \alpha e^{\left(\gamma - \frac{R_L}{2L_M}\right)t} - \alpha e^{-\left(\gamma + \frac{R_L}{2L_M}\right)t}$
 $\frac{dI}{dt} = \alpha \left[\left(\gamma - \frac{R_L}{2L_M}\right) e^{\left(\gamma - \frac{R_L}{2L_M}\right)t} + \left(\gamma + \frac{R_L}{2L_M}\right) e^{-\left(\gamma + \frac{R_L}{2L_M}\right)t} \right]$
 $L_M \frac{dI}{dt} \Big|_{t=0} = L_M \alpha \left[\left(\gamma - \frac{R_L}{2L_M}\right) + \left(\gamma + \frac{R_L}{2L_M}\right) \right] = V_M$ $2L_M \alpha \gamma = V_M$, $\alpha = \frac{V_M}{2L_M \gamma}$
 $I = \frac{V_M}{2L_M \gamma} e^{-\frac{R_L}{2L_M}t} [e^{\gamma t} - e^{-\gamma t}] \approx \frac{V_M}{2L_M \gamma} e^{-\frac{R_L}{2L_M}t} e^{\gamma t}$

- Pulse compression scheme: a charged capacitor can transfer almost all of its energy to an uncharged capacitor if connected through an inductor.
- Output voltage can be doubled in a peaking circuit.

Intermediate storage capacitors can be used to compress the pulse

Marx bank

intermediate storage capacitors

pulse forming lines water-insulated insulator outer simulation transmission stack MITLs volume lines

Capacitor load

 $I = \alpha sin(\omega t) + \beta cos(\omega t)$

Capacitor load

$$I = \alpha \sin(\omega t) + \beta \cos(\omega t)$$

$$I(t = 0) = 0 => \beta = 0$$

$$I = \alpha \sin(\omega t)$$

$$\frac{dI}{dt} = \alpha \omega \cos(\omega t)$$

$$L_M \frac{dI}{dt}\Big|_{t=0} = L_M \alpha \omega = V_M \qquad \alpha = \frac{V_M}{L_M \omega}$$

$$I(t) = \frac{V_M}{L_\omega} \sin(\omega t)$$

$$V_1 = V_M - \frac{1}{C_M} \int_0^t \frac{V_M}{L_\omega} \sin(\omega t) dt = V_M - \frac{V_M C_2}{C_M + C_2} [1 - \cos(\omega t)]$$

$$V_2 = \frac{1}{C_2} \int_0^t \frac{V_M}{L_\omega} \sin(\omega t) dt = \frac{V_M C_M}{C_M + C_2} [1 - \cos(\omega t)] \qquad \frac{V_2}{V_M}\Big|_{max} = \frac{2C_M}{C_M + C_2}$$
for $C_2 \sim C_M, \frac{V_2}{V_M} \sim 1$ for $C_2 << C_M, \frac{V_2}{V_M} \sim 2$

Peaking circuit, C₂<<C_M

$$V_1 = V_M - \frac{V_M C_2}{C_M + C_2} [1 - \cos(\omega t)] \approx V_M - \frac{V_M C_2}{C_M} [1 - \cos(\omega t)]$$

$$V_2 = \frac{V_M C_M}{C_M + C_2} [1 - \cos(\omega t)] \approx V_M [1 - \cos(\omega t)]$$

For
$$t = \frac{\pi}{\omega}$$
, $\cos(\omega t) = \cos(\pi) = -1$

$$V_1 \approx V_M \qquad V_2 \approx 2V_M$$

- The energy transfer is inefficient.
- $C_M/C_2 \sim 10$ is normally used.

Pulse compression scheme: C₂~C_M

$$V_1 = V_M - \frac{V_M C_2}{C_M + C_2} [1 - \cos(\omega t)] \approx V_M - \frac{V_M}{2} [1 - \cos(\omega t)]$$

$$V_M C_M \qquad V_M$$

$$V_2 = \frac{V_M C_M}{C_M + C_2} [1 - \cos(\omega t)] \approx \frac{V_M}{2} [1 - \cos(\omega t)]$$

For $t = \frac{\pi}{\omega}$, $V_1 \approx 0$, $V_2 \approx V_M$

Water is commonly used as the dielectric material for the intermediate capacitor

$$C = \frac{2\pi\epsilon_r\epsilon_0}{\ln(b/a)}l$$
 For $\frac{b}{a} = \frac{1}{0.9} \approx 1.1$

• The gap between two cylinders need to be able to handle the high voltage.

Air:
$$\epsilon_r = 1 => \frac{C}{l} = 0.5 \times 10^{-9} F/m$$

Water:
$$\epsilon_r = 80 => \frac{C}{l} = 4 \times 10^{-8} F/m$$

Ex: KALIF, bipolar Marx generator, charged up to ± 100 kV. $V_{M,out} = 5$ MV.

$$C_M = \frac{0.5\mu F}{25} = 25nF$$

Using air: $l = \frac{25 \times 10^{-9}}{0.5 \times 10^{-9}} = 50 \text{ m}$

Using water: $l = \frac{25 \times 10^{-9}}{4 \times 10^{-8}} = 0.625 \text{ m}$

Intermediate storage capacitors can be used to compress the pulse

Marx bank

intermediate storage capacitors

pulse forming lines water-insulated insulator outer simulation transmission stack MITLs volume lines

- Introduction to pulsed-power system
- Review of circuit analysis
- Static and dynamic breakdown strength of dielectric materials
 - Gas Townsend discharge (avalanche breakdown), Paschen's curve
 - Liquid
 - Solid

Energy storage

- Pulse discharge capacitors
- Marx generators
- Inductive energy storage

- Capacitive energy storage current amplifier.
- Inductive energy storage voltage amplifier.
- Notice that energy density of the inductive energy storage is 2 order higher than that of the capacitive energy storage.
- If I_o is large, charging of the inductor must be fast. It is because the energy loss in the resistance of the inductor windy and the opening switch.
- Current source has high internal impedance ($R_g >> R$) and a large power ($t_{charge} \downarrow$). $I_{max} = I_o \frac{R_g}{R_g + R}$ $I(t) = I_o \frac{R_g}{R_g + R} (1 - e^{-\frac{R + R_g}{L}})$

Output of the inductive storage

 Assumption: at t=0, inductance is fully charged. Resistance of the inductive storage is neglected.

Output of the inductive storage

Spark plugs in cars are triggered by the inductive energy storage

https://images.saymedia-content.com/.image/t_share/MTc0Mjk3MzYyODg0MjA4NTA4/diy-auto-service-ignition-systems-operation-diagnosis-and-repair.png

Triggering pulse for PGS machine

Pulsed-plasma thruster

- Introduction to pulsed-power system
- Review of circuit analysis
- Static and dynamic breakdown strength of dielectric materials
 - Gas Townsend discharge (avalanche breakdown), Paschen's curve
 - Liquid
 - Solid

Energy storage

- Pulse discharge capacitors
- Marx generators
- Inductive energy storage
- Rotors and Homopolar generators

Rotors and Homopolar generators

- Pulsed current source is needed such that charge time << L/R => using flywheel. $W_{\rm kin} = \frac{1}{2}\theta\omega^2$
- Energy density ~ 300 MJ/m³, total energy > 100 MJ.
- Can transfer its energy only in a time > 10 ms in most cases.
- Homopolar generator:
- In a self-exciting generator, B is created by the output current of the rotor.

$$V = \alpha I \omega$$

$$L\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\mathbf{t}} + \mathbf{I}\mathbf{R} = \alpha\mathbf{I}\boldsymbol{\omega}$$

$$\frac{1}{2}\theta\omega^2 + \frac{1}{2}\mathrm{LI}^2 + \int_0^t I^2 R \,\mathrm{d}t = \frac{1}{2}\theta\omega_o^2$$

Homopolar generators

37

- Switches
 - Closing switches: the switching process is associated with voltage breakdown across an initially insulant element.
 - Opening switches: the switching process is associated with a sudden growth of its impedance.
- Pulse-forming lines
 - Blumlein line
 - Pulse-forming network
 - Pulse compressor
- Pulse transmission and transformation

Outlines

Switches

Closing switches

- Opening switches
- Pulse-forming lines
 - Blumlein line
 - Pulse-forming network
 - Pulse compressor
- Pulse transmission and transformation
 - Self-magnetic insulation
 - Pulse transformer
 - Voltage multiplier
 - H-bridge pulse generator
 - Fast high-voltage pulse generator

- High-power switching systems are the connecting elements between the storage device and the load.
- Characteristics of the generator output pulse that is strongly dependent on the properties of the switches:
 - Rise time.
 - Shape.
 - Amplitude.

Closing switches

- The switching process is associated with voltage breakdown across an initially insulant element.
 - Automatically.
 - Externally supplied trigger pulse.

Gas switches (Spark-gap switches)

- Advantage of a gas switch:
 - Commonly applied in high-power pulse generators.
 - Easy to use.
 - Capable of handling large currents.
 - Capable of handling large charges.
 - Can be triggered precisely.
- Many applications require a precisely controlled initiation of the voltage breakdown.
- The trigger method has a big influence on the ignition delay and its variance (jitter).

Different closing switches operate in different pressure

All switching systems operates in 4 phases

- 1. Trigger phase: build-up of a trigger discharge.
- 2. Transition/commutation phase: transition from high to low switch impedance.
- 3. Stationary/conductivity phase: constant conductivity.
- 4. Recovery/restoration phase: restoration of the previous electric strength.

Fig. 4.2. Evolution of voltage, current, and power loss in a gas-filled switching system

Cooling is needed to remove the energy loss for the breakdown.

Fig. 4.2. Evolution of voltage, current, and power loss in a gas-filled switching system

- T_s: switching time
- T_r : pulse rise time ($T_r \approx 0.8 T_r$)
- U_M/I_M: maximum voltage/current

Gas-filled spark gaps

- Breakdown due to:
 - Breakdown voltage has been exceeded.
 - Breakdown strength has been reduced by certain events (UV radiation, plasma diffusion, etc.)

Gas-filled spark gaps

- Important parameters:
 - Self-breakdown / hold-off voltage U_b.
 - Variance of U_b: determines the probability of breakdown.
 - Operation range: range of voltage
 - Held off with sufficiently low pre-breakdown possibility.
 - Reliably triggered.
 - Jitter.
 - Switching time t_s: decay of the impedance (resistance and inductance).
 - Pre-breakdown inductance and capacitance.
 - Repetition rate capability.
 - Lifetime and cost.
- Triggering can be achieved by (1) a High-voltage pulse; (2) a laser pulse.

Spark-gap switch

• C_c: coupling capacitor.

- Longitudinal overvoltage triggering if the voltage amplitude of the trigger pulse added to the applied operating voltage is sufficient to breakdown a partial gap.
- Ignition of the 2nd partial gap occurs if its breakdown voltage is less than the operating voltage.
- Cc is used to decouple the trigger source from the generator.
- Cc >> Cb1 => $U_t(t=0) = U_g \frac{C_{b1}}{C_c + C_{b1}} \approx 0$
 - Longitudinal overvoltage triggering:

Ignition of the 2nd partial gap:

Spark-gap switch

• For a symmetric spark gap configuration, the trigger electrode should be positioned at 2/3 of the gap spacing from the main electrode.

$$U_g < U_{b1} = 2U_{b2}$$

 $U_{b2} < U_g < U_{b2}$ or $\frac{1}{3}U_b < U_g < \frac{2}{3}U_b$

Three-electrode trigger set-up

Potential distribution of a spark-gap

Fig. 4.6. Potential distribution in a three-electrode spark gap switch, before ignition (top), after application of a trigger signal (centre), and after breakdown of the first gap (bottom)

Longitudinal triggering

- t_a: trigger actuating time.
- t_d: switching delay.
- t_c: commutation time.
- t_s: switching time.

Longitudinal triggering

 2nd gap can fire only if its breakdown strength is continuous reduced by UV radiation from the spark channel plasma of the 1st gap.
=> much larger switch delay time.

Longitudinal triggering

 Longitudinal trigger can occur only for opposite polarities of the operating and triggering voltages.

Trigatron spark gap

• Best trigger performance: trigger and operation voltage are opposite, i.e.,

$$U_t \times U_g < 0$$
$$U_g \sim (80 \sim 99\%) U_b$$

• $U_{g} \sim 50\% U_{b}$ is possible, but with large delay and jitter.

Trigatron spark gap – $U_t \times U_g < 0$

• Step 1: Streamers begin to grow.

• Step 3: conducting channel is formed.

• Step 2: ionization density in the channel to grow after streamer touch the electrode

• Step 4: two thermalized arcing connecting two electrode and pin.

Trigatron spark gap – $U_t \times U_g > 0$

- Step 1: breakdown between the trigger pin and the grounded electrode.
- Step 2: breakdown between two main electrodes occurs due to the UV radiation emitted from the 1st arc.

• Breakdown is possible but with large delay and jitter.

Spark plug is a Trigatron

Spark plugs in cars are triggered by the inductive energy storage

https://images.saymedia-content.com/.image/t_share/MTc0Mjk3MzYyODg0MjA4NTA4/diy-auto-service-ignition-systems-operation-diagnosis-and-repair.png

The pulsed-power system in Pulsed-Plasma Laboratory

 A 1 kJ pulsed-power system at ISAPS, NCKU started being operated since September, 2019.

Experiments will be taken placed at the center of the vacuum chamber

Unit: mm

Low inductance rail-gap switches are used

Knife edge trigger electrode

- The switch is pressurized with nitrogen gas (1~3 atm).
- Multi-channel discharges between two rail-like electrodes will be triggered by a fast trigger pulse generator (rising speed > 5kV/ns).

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020) R.Verma etc., Rev. Sci. Instrum. 85, 095117 (2014)

A slow trigger pulse generator was built using a ignition coil for cars

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)

Many MOSFET connected in series can be used to provide a fast high-voltage triggering pulse

A three-stage Marx generator is used to provide a fast high voltage trigger pulse

- In a Marx generator, capacitors are connected in parallel when they are being charged.
- Capacitors in the Marx generator are connected in series during discharge.

$$V_{\text{out, ideal}} = -N \times V_0 = -3 \times 20 \text{ kV} = -60 \text{ kV}$$

The falling speed of high voltage pulse from the Marx meets the requirement for triggering rail-gap switches

Multistep trigger system is used

Multistep trigger system is used

Multistep trigger system is used

Magneto-inertial fusion electrical discharge system

O. V. Gotchev, etc., Rev. Sci. Instrum. 80, 043504 (2009)

Breakdown uncertainty increases with a larger holding voltage

	Trigatron	Trigatron	SparkGap	SparkGap	SparkGap
	With Spacer	No Spacer	With 2 Spacer	With 1 Spacer	No Spacer
Gap	6 mm	9 mm	6 mm	9 mm	12 mm
Avg	17.49	24.55	19.21	28.86	35.83
Std	0.60	0.32	0.39	1.50	1.43
Max	18.70	25.10	19.80	32.40	38.60
Min	16.80	23.80	18.40	26.10	33.00

Multistage spark-gap switch with laser triggering

- Simply scaling a three-electrode spark gap to multimegavolt operating voltages would lead to large gaps, making the jitter and inductance unacceptably high.
- Operating voltage of up to 6 MV and a switch current of 0.5 MA.
- It consists of 15 equal spark gaps and a trigger section.
- The operating voltage is ^S around 90% of the selfbreakdown value with a prefire probability of 0.1 %.
- The gap capacitances are small, 20 % of the operating voltage occurs across the trigger section.

Multistage spark-gap switch with laser triggering

- The switch is 68 cm long and 61 m in diameter.
- The 1st gap is 5.7 cm and a UV laser pulse (KrF) with a 25 mJ pulse energy is necessary.
- ~1 ns after the laser pulse, a breakdown occurs in thetrigger gap and the voltage increases across the remaining gaps rapidly. An ignition wave propagates to the other gaps and ignites them sequentially.
- Total inductance: 400 nH; Trigger delay: 20 ns; jitter <0.4 ns.

Fig. 4.13. A 4 MV version of a multigap spark switch

- Thyratrons are gas-filled switching devices with a gas pressure (30-80 Pa/3x10⁻⁴ – 8x10⁻⁴ atm) much lower than a spark-gap switches.
- A triode configuration is used.
- The thyratron is characterized by the presence of a plasma, which allows the passage of large currents without significant electrode erosion.
- The hold-off voltage is limited by field emission, > 10⁵ V/cm.
- The anode-grid distance is 2-3 mm, ~40 kV hold-off voltage.

- The cathode-grid distance corresponds to the Paschen minimum U_{min}.
- If U > U_{min}, a glow discharge is initiated between the cathode and the grid. => electrons from the glow discharge plasma can migrate rapidly through the openings in the grid to the main discharge region between the grid and the anode. => thyratron closes.

- Operating voltage: several times 10 kV. After ignition: ~100 V => an appreciable power loss occurs and need to be dealt with by cooling.
- Delay: ~200 ns; jitter: ~ns.
- Operating times: 10⁵ hours; Repetition rates: few kHz; Operating power: MW.
- To regain the initial hold-off voltage: anode voltage must become slightly negative for 25-75 us for plasma to decay.

- A thermionic cathode is used in a thyratron.
- Advantage: absence of a marked cathode potential drop using hot cathode.
- If cold cathode is used, potential drop is needed to accelerate the ions for secondary-electron production => lead to erosion of the cathode and thus the lifetime.
- A baffle is used as a screening element to avoide electron directly reaching the anode and causing the damage. It is shifted relatively to the grid to prevent a direct line of sight between cathode and anode.

The pseudospark switch

- The pseudospark switch operates in a low-pressure regime, where the mean free path of electrons and ions become comparable to the electrode spacing. Most electrons reach the anode without any ionizing collisions in the gas.
- Hollow cathode: increases the possible discharge path lengths.
- The diameter of the aperture determines the field penetration into the hollow cathode.

The pseudospark switch

- A small number of initial electrons, triggered discharge in the hollow cathode can initiate the pseudospark discharge.
- The switching mechanism is based on the build-up of a highly ionized plasma.
- plasma build-up occurs first inside the hollow cathode where E/P is low.

Anode

The pseudospark switch

- lons drift back into the hollow cathode => forming a positive space charge (virtual anode).
- Static electric field inside the hollow cathode is distorted.
- Electron production rate > loss rate in the hollow cathode and subsequently in the anodecathode gap.
- A low-resistivity plasma is estabilished, and breakdown of the gap occurs.
- Jitter: 10 ns; Delay: 0.5 us.
- Advantage: high dl/dt, reverse current, long lifetime, low jitter.

Anode

The pseudospark switch with triggering system

Ignitrons

- Ignitron is a very high-current, highvoltage switch with
 - a liquid mercury pool cathode
 - an ignitor pin dipping into the liquid-metal reservoir.
- Internal mercury pressure: ~5 Pa
- Can switch a pulse charge of up to 2000 Colum.
- Air/water cooled may be needed.
- Internal splash and deionization baffles may be contained in some devices.
- Anode:
 - Anode is massive to prevent an impulsive temperature rise during conduction.
 - Anode is cooled through (1) anode stem;
 - (2) radiation to the cooled walls.

Ignitrons

- Rise time ~ 300-500 ns.
- After current drops below a critical value => no more additional vapor is produced => with additional time to allow recombination and recondensation of mercury.
- The mercury vapor must be forced to recondense back into the pool.
- Repetition rate ~1 Hz
- Progressively eliminated due to the mercury-containing waste.

Krytrons

- Low-pressure gas discharge device with a tetrode configuration, sealed in a glass tube with a cold cathode.
- 1.3 kPa (9.75 torr) of helium gas.
- A special design of the anode-grid area + applied gas pressure
 => large hold-off voltage.
- An already existing plasma is created by a glow discharge between the special keep-alive electrode and the cathode.
 - => short trigger delay: ~30 ns.
- Rise time: ~1 ns, Vmax: 8kV, Imax: 3 kA.
- Pulse length~10 us, repetition rate ~1 kHz
- A positive pulse at the control grid initiate the switch.

Krytrons

- A ⁶³Ni β-emitter may be enclosed to create a weak permanent preionization.
- It is widely used in fast trigger generators and Pockels cell driver and also ideal for use in the detonating circuitry of bombs.

Triggered Vacuum Gap (TVG)

- A three-electrode system with P=0.001 Pa (7.5 x 10⁻⁶ Torr).
- Closed by injection of a plasma cloud.
- Hold-off voltage depends on the properties of the electrode surfaces.
- I up to 10 kA, V up to 100 kV.
 Repetition rates of several kHz are possible if cooled.
- The gas-plasma mixture is created with the help of an auxiliary arc, burning between two electrodes inserted into one of the main electrodes.
- Jitter ~ 30 ns; switching time ~100 ns.

- The limiting switching characteristics of semiconductor devices are:
 - Relatively low mobility
 - Low density of charge carries
 - Comparatively low operating temperature
- => Large volume of the conducting region is required to conduct large currents.

Fig. 4.22. Structure of thyristor, and two-transistor equivalent circuit

J1

J2

J3

- Three modes of operation: •
 - **Reverse blocking state**
 - Forward blocking state •
 - **Conduction or on state** •

held by J_2 .

- Three modes of operation: •
 - **Reverse blocking state**
 - Forward blocking state •
 - **Conduction or on state** •

held by J₁.

held by J_2 .

- Three modes of operation: •
 - **Reverse blocking state**
 - Forward blocking state •
 - **Conduction or on state** •

held by J₁.

held by J_2 .

- Without any external action, the thyristor cannot come back from the conducting to the blocking state.
- Two methods are generally applied:
 - Commutation of the current by polarity inversion.
 - Commutation of the current, supported by gate-assisted turn-off.

Fig 2: Forward Conduction

IGBT

- Advantage:
 - Bipolar transistors (BJT) low resistance in the switched-on state
 - Field effect transistors (FET) loss-free gate control
- Switch-on times:
 - ~ several times 10 ns.
- It has a limited reverse-blocking capability => an external diode is sometimes used in parallel.
- High-power IGBT: blocking voltages
 V~4 kV, on state I ~3kA

Optically activated semiconductor switches

Rn: recombination rate. Gn: generation rate.

 Electron and hole generation is caused either by optical excitation or by avalanche ionization at sufficiently high electric fields.

Fig. 4.31. Ionisation rate coefficients α_n and α_p

Optically activated semiconductor switches

Optically activated semiconductor switches

- Linear photoconducting regime: the available number of charge carriers is determined only by the laser intensity.
- Nonlinear regime: the number of charge carriers is increased by collisional ionization and as in a gas switch increases exponentially.

Magnetic switches

- Relatively small losses and without wear.
- While the capacitor is being charged: the coil has a ferromagnetic core with high inductance at the beginning: V=Ldl/dt => like an open switch.
- When saturation of the core is reached by the leakage current flowing through the coil => L drops abruptly by a factor of µ => switch is closed.
- µ=B/H ->0 when saturated.
- The hysteresis loop should approximate a rectangular form, with an abrupt change of the permeability over several orders of magnitude when the saturation point is reached.

Summary

Type	Hold-off	Peak	Cumu-	Repetition	Lifetime	Remarks
	poten-	$\operatorname{current}$	lative	rate (Hz)	(number	
	tial	(kA)	charge	[commuta-	of pulses)	
	(kV)		(As)	tion time		
				(ns)]		
Spark gap	1-6000	$10^{-3} - 1000$	0.1 - 50	1-10 [1-1000]	10 ³ -10 ⁷	Lifetime is determined by electrode erosion
Thyratron	5 - 50	0.1 - 10	10^{-3}	$1000 \\ [5-100]$	$10^{7} - 10^{8}$	Applied in lasers and accelerators
Ignitron	> 10	> 100	2000	1 [1000]	$10^{5} - 10^{6}$	Applied in lasers and accelerators
TVG	0.5 - 50	1 - 10	40	1 [10–100]	$> 10^4$	
Pseudo- spark	1 - 50	1 - 20	1	$1-1000 \ [> 10]$	$10^{6} - 10^{8}$	Similar to Thyratron
Krytron	8	3	0.01 - 0.1	< 1000 [1-10]	10 ⁷	Very short delay and commutation time
Magnetic Switch	1000	100– 1000		10 [5–10000]	$10^8 - 10^9$	Cannot be triggered; one operating point only
Thyristor	< 5	< 5	10^{-2}	10 [> 1000]	10 ⁸	Can be stacked; expensive; complex
IGBT	< 4	3		100	10^{8}	Can be switched off
GaAs pho- toactivated switch	< 20	1 - 10	$< 10^{-4}$	< 10 [1-10]	$10^2 - 10^3$	Needs intense light source